1. Equality Constraints

\[f(\vec{x}) \rightarrow \text{min}, \quad g_j(\vec{x}) = 0 \]

- Elimination:
 \[x_1 \cdot x_2 \rightarrow \text{min}, \quad x_1 + x_2 = 1 \]
 \[x_1(1 - x_1) \rightarrow \text{min} \]
 (not always possible)

- Lagrange multipliers:
 \[f(\vec{x}, \lambda) = f(\vec{x}) + \sum_{j=1}^{m} \lambda_j g_j(\vec{x}) \]

To find \(\vec{x}^* \):

\[\frac{\partial f}{\partial x_1} = 0, \quad \frac{\partial f}{\partial \lambda} = 0 \]

(system of equations)

Example:

\[f(x_1, x_2) = -\frac{1}{2} x_1 x_2 \rightarrow \text{min} \]
\[x_1^2 + x_2^2 - r^2 = 0 \]
\[\Rightarrow f(\vec{x}, \lambda) = -\frac{1}{2} x_1 x_2 + \lambda(x_1^2 + x_2^2 - r^2) \]

Result:

\[x_1^* = x_2^* = \frac{r}{\sqrt{2}}, \quad \lambda^* = \frac{1}{2} \]

2. Inequality Constraints

- In case of explicit (constant) bounds:
 Transformation

\[x_i \geq 0 \quad \iff \quad x_i = \frac{y_i^2}{\exp(y_i)} \]
\[0 \leq x_i \leq 1 \quad \iff \quad x_i = \sin^2 y_i \]
\[a_i \leq x_i \leq b_i \quad \iff \quad x_i = a_i + (b_i - a_i) \sin^2 y_i \]

Optimization under Constraints 2.3

- In case of implicit bound:
 Penalty function

\[f(\vec{x}, r^{(p)}) = f(\vec{x}) + r^{(p)} \sum_{j=1}^{m} \left[\frac{w_j}{g_j(\vec{x})} \right] \]
\[+ \frac{1}{r^{(p)}} \sum_{k=1}^{l} \left[w_k h_k^2(\vec{x}) \right] \rightarrow \text{min} \]

Original problem:

\[f(\vec{x}) \rightarrow \text{min} \]
\[g_j(\vec{x}) \geq 0 \]
\[h_k(\vec{x}) = 0 \]

Sequence of optimizations, for \(p = 1, 2, \ldots \)

\[r^{(p)} > r^{(p+1)} > 0 \]

SUMT:
 Sequential
 Unconstrained
 Minimization
 Technique
 (Fiacco & McCormick)

Visualization of SUMT Principles:
Special case:

Searching for a feasible point as starting point for optimization.

\[f(\vec{x}) = - \sum w_i g_i(\vec{x}) \rightarrow \min \]

Where \(w_i = \begin{cases} 1 & \text{if } g_i(\vec{x}) < 0 \\ 0 & \text{otherwise} \end{cases} \)

Stop, if \(\vec{f}(\vec{x}) = 0 \)

Continue with optimization method, which can handle inequality constraints

Optimization under Constraints 2.7

Multiple Optimization Criteria

- **Motivation:**
 Multiplying conflicting measures of performance
 \[\vec{f}: M \rightarrow \mathbb{R}^k, \quad \vec{f}(\vec{x}) = (f_1(\vec{x}), ..., f_k(\vec{x})) \]

- **Improvement in any combination of objectives not possible without degradation in the remaining:** Solution \(\vec{x}_i \) is Pareto-optimal (non-dominated)
 \[\Leftrightarrow \beta \vec{x}_i: \vec{f}(\vec{x}_i) \preceq \vec{f}(\vec{x}) \text{, where} \]
 \[\vec{f}(\vec{x}_j) \prec \vec{f}(\vec{x}_i) \Leftrightarrow \forall p \in \{1, ..., k\}: f_p(\vec{x}_j) \leq f_p(\vec{x}_i) \land \exists p \in \{1, ..., k\}: f_p(\vec{x}_j) < f_p(\vec{x}_i) \]
 (assuming minimization)

- **Pareto-set:** Set of all Pareto-optimal solutions

- **Cost assignment with multiple objectives:**
Decision making problem, human preferences

Multiple Optimization Criteria

- **MCDM:** Multiple criteria decision making
 Vector-optimization
 \[f: M \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^k \]
 \(I \) (conflicting) goals \(f_1(\vec{x}), ..., f_k(\vec{x}) \)

- **Goal:** Find efficient / Pareto-optimal / non-dominated solutions

Optimization under Constraints 2.8

Example: 2-dim. criterion space

CRITERIA SPACE
(cost versus reliability)

- Efficient solutions
- Single-criteria optima

Bioinformatics and Optimization

Bioinformatics and Optimization
Multiple Optimization Criteria

a) “Pathological case” of identical objectives

b) “Classical case” of identical objectives

c) Pareto set can be unconnected

Efficient solutions: \(\bar{x} \)

None of the goals can be improved anymore, without making at least one other goal worse

\[
\forall \bar{x} \in M : \quad f_k(\bar{x}') \leq f_k(\bar{x}) \quad \forall k \in \{1, \ldots, l\}
\]

and

\[
f_k(\bar{x}') < f_k(\bar{x})
\]

for at least one \(k \)

Also called: Non-dominated

A further selection from the Pareto-set requires subjective criteria in addition

\(\Rightarrow \) Decision maker!

Optimization under Constraints 2.11

Traditional MCDM approaches:

- Weighted sum
 \[
f(\bar{x}) = \sum_{k=1}^{l} w_k f_k(\bar{x})
 \]
 \(w_k \): Subjectively chosen weight factors

- Minimax approach / goal programming
 \[
 \Phi(\bar{f}(\bar{x})) = \max_{i=1,\ldots,k} \left\{ \frac{f_i(\bar{x}) - g_i}{w_i} \right\} \rightarrow \min
 \]
 - \(g_i \): are goals specified by the user goal attainment
 - \(w_i \) smaller \(\Rightarrow \) Objective \(i \) becomes harder
 - Often results in non-smooth fitness functions
 - Not guaranteed to produce strictly non-dominated solutions

- Target vector approach
 \[
 \Phi(\bar{f}(\bar{x})) = \| (\bar{f}(\bar{x}) - \bar{g}) \cdot \bar{w}^{-1} \|_2 \rightarrow \min
 \]
 - Minimizes (weighted) distance from target vector
 - \(g_i \): Target vector, specified by user
 - \(\bar{w} \): (Diagonal) weight matrix
 - Euclidean norm: \(\alpha = 2 \)

Optimization under Constraints 2.12

Additional Difficulties / Aspects:

- Discrete variables (e.g., integer, \(\{0, 1\} \))

\(\Rightarrow \) Minimize (estimated) expectation

\(\Rightarrow \) Stochastic Approximation algorithm (\(n = 1 \))

\[
x^{(k+1)} = x^{(k)} - 2\alpha^{(k)} \frac{F(x^{(k)} + c^{(k)}) - F(x^{(k)} - c^{(k)})}{2\alpha^{(k)}}
\]

\[
a^{(k)} = \frac{1}{k} a^{(0)}, \quad a^{(0)} > 0
\]

\[
c^{(k)} = \frac{1}{\sqrt{k}} c^{(0)}, \quad c^{(0)} > 0
\]

Gradient method with trial \(c^{(k)} \) / work \(a^{(k)} \) steps
• Moving Optima

Dynamic optimization: Maintain an optimal condition in the face of varying (time) conditions of the environment

Permanent on-line optimum search
Information becoming obsolete over time
→ “forgetting” necessary

Examples:
- Traffic control optimization
- Elevator control optimization
- Free-flight aircraft routing

→ Adaptive control systems:
 Set up an internal model over time; learn
→ If output quantities themselves (i.e. objective function) used to adjust control system: Self-learning

Efficiency

1: Specialized method for a very restricted problem class
2: Total enumeration, Monte Carlo, random walk: Widely application, but bad efficiency
3: Robust heuristics: Widely applicable, with good efficiency

E.g.: Genetic Algorithms, evolution strategies, Simulated Annealing

Optimization under Constraints

Applicability of the “school-method”?

Necessary cond.: Determine 1\(^{st}\) derivative and its zero(\(\epsilon\)), i.e. \(f'(x) = 0\)

Sufficient cond.: Determine 2\(^{nd}\) derivative and its sign for zero(\(\epsilon\)) \(x^*\)

\[f''(x^*) = \begin{cases}
 > 0 & \Rightarrow x^* \text{ minimum} \\
 < 0 & \Rightarrow x^* \text{ maximum} \\
 = 0 & \Rightarrow ?
\end{cases} \]

\(f''(x^*) = 0\): Determine k\(^{th}\) derivative,
until \(f^{(k)}(x^*) \neq 0\)

\(k \geq \text{even}\) \(\Rightarrow\) \(f^{(k)}(x^*) > 0\) minimum
\(k \geq \text{odd}\) \(\Rightarrow\) \(f^{(k)}(x^*) < 0\) maximum

\((n = 1: \text{MacLaurin, 1742})\)
\((n > 1: \text{Scheefer & Stoiz 1886, 1894})\)

Precondition: \(f(x)\) k-fold (partially) differentiable, i.e. analytically given!
No constraints!

Robustness - intuitively:

1: combinatorial
2: unimodal
3: multimodal

1: Specialized method for a very restricted problem class
2: Total enumeration, Monte Carlo, random walk: Widely application, but bad efficiency
3: Robust heuristics: Widely applicable, with good efficiency

E.g.: Genetic Algorithms, evolution strategies, Simulated Annealing